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ON THE STABILITY OF THE BOUNDARY OF
THE GEOMAGNETIC FIELD
By John R. Spreiter and Audrey L. Summers

Ames Research Center
Moffett Field, Calif.

SUMMARY

The response of the magnetosphere boundary in a steady solar wind to
small initial departures from equilibrium is investigated in accordance with
the classical model of Chapman and Ferraro, If the wavelength and amplitude
are sufficiently small that curvature and second-order effects can be disre-
garded, all perturbations, except those having wave fronts alined with the
direction of the local magnetic field, are found to damp exponentially with
time and to drift along the boundary with the tangential component of the
solar wind. Alined waves, which neither damp nor amplify in this approxima-
tion, are examined further by inclusion of curvature and higher order effects.
A first-order analysis shows that curvature introduces a destabilizing effect
in small regions in the vicinity of the neutral points and a stabilizing
effect elsewhere, Possible geophysical consequences, such as the persistent
magnetic agitation of the polar regions, are discussed. An exact solution for
an alined cylindrical solitary wave having an initial form of a circular arc
is also presented to illustrate a mode of response that appears to permit
injectilon of elongated and widely separated columns of solar wind plasma into
the magnetosphere under certain conditions and to provide a mechanism for
momentum transfer from the solar wind to the ambient magnetosphere plasma.

INTRODUCTION

This paper is concerned with a theoretical determination of the dynamical
response of the boundary of the geocmagnetic field in a steady solar wind to a
small initial disturbance from the equilibrium configuration. It differs from
previous related studies by Dungey (refs. 1 and 2) and Parker (ref. 3) in that
(a) the analysis is based on strict application of the classical theory of
Chapman and Ferraro and does not invoke additional assumptions, such as those
brought over from the study of somewhat analogous hydrodynamic problems
related to the generation of surface waves by wind, and (b) effects of non-
linear terms and of curvature of the eguilibrium shape of the boundary are
included in those cases that are neutrally stable in the first approximation.

Although the Chapman-Ferraro theory is itself a highly simplified theory,
it has emerged from numerous comparisons with experiments conducted in space
as the leading theory for explaining many features of the interaction between
the geomagnetic field and the solar wind. It is true that such comparisons



and other considerations have shown that additional features, such as a
detached bow wave or viscous or turbulent mixing at the boundary, are probably
important, but they appear more as additions than alterations to the basic
theory (e.g., see refs. L4 and 5 for recent résumés)., Inasmuch as the present
application of the Chapman-Ferraro theory is intermediate between the two
principal previocus applications to the interaction of the geomagnetic field
with a steady solar wind and with the front of an immense and rapidly advanc-
ing cloud of solar plasma (see ref, 6 for an extensive review of these appli-
cations), it is anticipated that the results will have the same general degree
of validity and usefulness. At very least, the results have merit in their
own right as part of a consistent set of formal deductions and consequences

of the basic Chapman-Ferraro model of the interaction of the geomagnetic field
and solar plasma.

The results themselves have a number of features in common with those
given previously by Dungey and Parker, and some features that differ substan-
tially therefrom. In particular, the conclusion that the boundary of the
geomagnetic field is unstable is not supported in general by the present
results., The results thus appear to be more in keeping with the suggestion of
Dessler (refs. 7 and 8) that magnetcmeter and plasma data indicate the bound-
ary to be stable., (See, however, ref, 9 for a commentary on the earlier of
these papers.) In some respects, however, the dynamical response determined
in the present analysis is more complicated than can be described by a simple
statement of stability or instability. It is found, for instance, that a
small portion of the boundary over the polar regions is always unstable for a
certain class of initial disturbances. A major portion of the boundary, how-
ever, is stable to sufficiently small disturbances, although unstable to
larger disturbances, The analysis also discloses a mode of response that
appears to permit injection of elongated and widely spaced columns of solar
plasma into the magnetosphere under certain conditions and to provide a mech-
anism for momentum transfer from the solar wind to the plasma contained in the
magnetosphere,

A somewhat similar injection mechanism has also been proposed recently by
Barthel and Sowle (ref. 10). Details of the analysis are different in several
respects, however, and the final conclusion differs in one very important fea-
ture. In particular, Barthel and Sowle conclude that injection will occur
only if there is a very sudden increase in the intensity of the solar wind,
such as might occur with a frequency of about 10 per year following large
solar flares. The present analysis suggests, however, that injection will
occur with even very modest irregularities in the solar wind, such as might
be capable of forming an elongated dent in the magnetosphere boundary having
an initial depth of only a few tens of kilometers.

STATEMENT OF MATHEMATICAL PROBLEM

The theory of Chapman and Ferraro provides a precise, although idealized,
representation of’ the interaction between the geomagnetic field and the solar
wind, be 1t steady or unsteady. According to this theory, the solar wind is
considered to be free from significant influence of magnetic fields, and the



earth 1s considered to be devoid of any atmosphere in the region penetrated
by the solar plasma., The interaction is such that a current system is estab-
lished which terminates the geomagnetic field abruptly at a distance of the
order of ten or more earth radii from the earth, and which leads to forces
that retard and repel the advance of solar plasma toward the earth. In this
way, the geomagnetic field is confined to a hollow or cavity carved out of
the solar plasma. Within this cavity, or magnetosphere, the magnetic field
satisfies the equations of a static magnetic field in a vacuum, that is

div B = 0 , curl B = O (1)

The total magnetic field B in the magnetosphere is the sum of the permanent
magnetic field @p of the earth and induced magnetic fields B’ due to elec-
tric currents in the ionosphere, the magnetosphere, and at the interface
between the magnetosphere and the solar wind. The permanent magnetic field

is usually represented in studies of the boundary of the geomagnetic field by
a simple magnetic dipole placed at the center of the earth and alined with

the geomagnetic axis as determined from magnetic surveys. The effects of
electric currents within the ionosphere and the magnetosphere are usually con-
sidered to be too small, and also too uncertainly known, to be included in the
analysis, although the effects of the presence of a substantial ring current
on the location of the boundary of the geomagnetic field in a steady solar
wind have been investigated by Spreiter and Alksne (refs., 11 and 12). In

this paper, we are concerned only with the dynamical response of an element

of the boundary to a small initial displacement from its equilibrium location.
For this purpose a detailed specification of magnetization and current dis-
tribution at pcints rar removed from the element is not required.

A complete mathematical description does require, however, that appro-
priate conditions be specified at the boundary of the magnetosphere, that is,
at the magnetopause. Since the location of the magnetopause is unknown and
must be determined as part of the solution, it is necessary to specify two
boundary conditions to determine a unique solution, One is that the normal
component of the geomagnetic field vanish at the magnetopause, that is

Bg + fig = By = O (2)

where Bg refers to the value of B at the magnetopause and ig refers to
the unit normal taken positive when directed into the magnetosphere. The
second is that the pressure exerted on the boundary by the particles of the
solar wind be balanced by the magnetic pressure Bsz/Bn. This relation may
be written as

2

Bg" /8 = K[ (V - v) - fig] (3)

where m, n, and ¥ refer to the mass, number density, and velocity of the
ions (generally considered to be principally protons) of the undisturbed
incident stream, y refers to the local velocity of an element of the magneto-
vause, and K 1is a constant coefficient. It is required, in addition that

(V-1 -85>0 (&)

[ .



in order to avoid the occurrence of regions of the magnetopause that are
shielded from direct impact by particles of the solar wind, and for which
equation (3) would be inappropriate.

It has historically been considered that the particles are, in effect,
specularly reflected at the boundary in which case K = 2 (see refs. 13 and 1L
for a discussion of other values for K that have sometimes been used for this
case). It has been argued recently by Axford (ref. 15), Kellogg (ref. 16),
Spreiter and Jones (ref. 17), and others, however, that the presence of a weak
interplanetary field may have the important effect of causing the solar wind
to behave as a continuous fluid over length scales that are large compared
with the proton Larmor radius. Since the Larmor radius is about 600 km for a
300 km/sec proton in a magnetic field of 5y and a typical dimension of the
magnetosphere is of the order of 10° km, it follows that the solar wind would
flow around the magnetosphere much as a fluid about & solid object. Since,
moreover, the effective Mach number based on the speed of a magnetoacoustic
wave is much greater than unity, there would be a detached bow wave upstream
from the magnetosphere. Nevertheless, the aerodynamic pressure exerted by the
wind on the boundary would still be represented, according to the Newtonian
theory of hypersonic flow, by the right side of equation (3) with K = 1.

This change from K = 2 to K = 1, without further change of the governing
equations (1) through (4), leaves the calculated form of the magnetopause
unaltered, although all linear dimensions from the center of the earth to the
magnetopause increased by a factor of 21/6. Results so obtained have been
shown (IG Bulletin 84, June 1964) to be in excellent agreement with data
obtained in space with IMP-I satellite (Explorer XVIII). The effects of such
a change are of even less importance in the present investigation, since we
are concerned with deviations from the equilibrium configuration, and K
cancels out of the analysis in most cases,

The equilibrium steady-state configuration of the magnetopause and the
enclosed magnetic field is defined by the same set of equations, except that
v is equated to zero in equations (3) and (4). Equation (3) is thus replaced
by

2 s 2
Bse/8rn = Xm(V .« fige) (5)
where the subscript e indicates
y values associated with the equilibrium
configuration.

_MAGNETOPAUSE
2=2Z(x,y,b-

SOLAR PLASMA

Solutions of the foregoing equa-
tions to be presented in the remainder
of this paper are concerned with the
behavior of limited portion of the mag-
netopause, and are expressed in terms
of the local rectangular Cartesian

X coordinate system illustrated in fig-
MAGNE TOSPHERE ure 1, In all cases, the origin is
mﬂtg;g placed at the center of the region of
Figure 1.- View of coordinate system and an interest, either at or near the mag-

element of the magnetopause. netopause, and the 2z axis is directed




normal to the boundary and into the magnetosphere, It is thus convenient to
represent the coordinates of the boundary by =z = Z(x,y,t) where t represents
time., Further, attention is confined to a sufficiently small portion of the
magnetopause that Z is small compared not only with the over-all dimensions
of the magnetosphere, such as the distance from the center of the earth to the
nearest part of the magnetopause, say 60,000 km under representative condil-
tions, but also with the dimensions in the x and y directions of the mag-
netopause element under consideration. The velocity of the undisturbed
incident solar plasma is expressed in terms of the components Vi, V., Vz, and
the unit vectors i, j, k parallel the x, y, z axes, respectively; %hus,

V= ivy + 3V + kv (6)
The equilibrium magnetic field can be expressed similarly as
Be = 1By + JBe, + kBe, (7)

where Be, = Bg cos 0, Be,, = Be sin 0, and Be;, » O. The Cartesian components
of the unit normal ﬁs t0 the magnetopause are

o A(7fx) + 3(dzfey) + K (8)
[1+ (32/3x) + (dz/3y)21 ™ 2

Since, furthermore,
v - fig = (3z/3t)k - fig (9)
at any point xy on the magnetopause,

-V, 0Z/dx - V.QZ/dy + Vs - 3Z/dt
(V-v) « fg = == fox - Vyor/ Z 1;2 (10)
[1 + (BZ/Sx)g + (32/3y)%]

The foregoing equations completely describe the mathematical model on which
the remainder of .the discussion is based. The remainder of this paper is
concerned with the determination and discussion of solutions for the dynami-
cal response of the magnetosphere boundary to a variety of initial displace-
ments from equilibrium. It is assumed throughout that the undisturbed
incident solar wind is uniform and steady in space and time.

FIRST-ORDER SOLUTION FOR SMALL AMPLITUDE WAVES ON AN
OTHERWISE FLIAT MAGNETOSPHERE BOUNDARY

Consider first the case of small amplitude waves of sufficiently short
wavelength that curvature of the equilitrium magnetosphere boundary can be
disregarded., Neglecting the effects of curvature is permissible under most



circumstances in which the wavelength is small compared with the radius of
curvature of the equilibrium boundary. Under representative conditions, the
latter dimension is of the order of 60,000 km or more everywhere except in a
small region in the vicinity of each neutral point. It is further assumed
that the ratio of the amplitude to the wavelength is sufficiently small that
we can safely disregard all terms of higher order than the first in Z and
its derivatives, where =z = 0 1s taken to represent the coordinates of the
flat equilibrium boundary, and z = Z(x,y,t) represents those of the perturbed
boundary.

Under the above conditions, we can approximate (V - y) : fig by the
numerator of the right side of equation (10), and its square by

(¥ -y) - 6s] = vy [1 -2 <VZ =t Tz 5 + V7 St (11)

The equilibrium magnetic field associated with the undisturbed flat boundary
is simply Be = const, The total field can be expressed by

B=3Be +D (12)

~ ~

where b 1is a function of space and time that represents the perturbation
magnetic field due to the departure of the magnetosphere boundary from its
assumed flat equilibrium shape. To first order in }, we have

-

r 2 2 -
B2 _ L\éex + b¥> + <?ey + by> + b, J

2
~ Be, + Bgy + 2(§exbx + Beyby>

Bo7[1 + 2(by cos 6 + b, sin 6)/Bg] (13)

y

Since the difference between the value for L at the actual location of the
boundary and at the equilibrium position (z = 0) is given by an expression of
the form (db/dz)Z and is, hence, a product of small guantities, it is suffi-
cient to evaluate Bsg at z = 0; thus,

2 2 .
Bg” = Be“[1 + 2(byx cos 6 + by sin 6)/Be]Z=O (14)




Substitution of equations (11) and (14) into equation (3) yields

B2 [ bx cos 8 + by sin 6 > Vx 7, Vy 9z 1 37\
—8;L1+2< Ba )Z:O=KmnVZ [1_2<E§§+Vzé§+vz_6_‘tj

(15)

Since the equilibrium surface lies in the xy plane, fige = k for this case,
and equation (5) reduces to

BoZ /8% = KV, (16)

Combining equations (15) and (16) yields

(17)

Be ) T \Vy ox

<PX cos 6 + by sin 6\ Vx oz  Vy oz 1 52)
/220

- V, ox © V, Oy TV %

The right side of equation (17) can be simplified by transforming to a coor-
dinate system fixed with respect to the tangential component of the solar
wind. We thus introduce the new variables

E = x - Vgt , n =y - Vgt , t =z, T =1 (18)

Equation (17) thus becomes

bg cos 6 + by sin é) 1 d7
< = - ¥ 57 (19)

In order to proceed further, it is necessary to determine the appropriate
relation between b and Z. Substitution of equation (12) into equation (l),
with Be = const, shows that divp = O and curl b = O. This implies that

b = -grad Q (20)

wvhere ( 1s a solution of Laplace's equation




v o =0 (21)

The boundary conditions for b are that

(P)g =0 (22)

and

o7
<Be/€ N ds =St as tonds - 5t cos 9 + n sin 6 (23)

The corresponding conditions for § are

(Q)§=“': const (ah)

which can be equated to zero without loss of generality, and

< gE cos 0 + %— sin 6 (25)

A general solution of equation (21) that vanishes at infinite { can be
found by separation of wvariables to be a summation of terms of the form

/2
= (A sin kit + B cos k1£)(C sin kon + D cos kon)expl-(k1% + k22)  t] (26
2

in which the integration constants may vary with time. If attention is con-
fined to wavelike boundary perturbations having nodal lines at 7 =0
arranged in the form of a rectangular grid, and the coordinate system is ori-
ented without further restriction so that the ¢ and n axes are parallel the
nodal lines at that time, we can write

(Z)T:O = ¢(0) cos kit cos ko (a7)

The proper evaluation of the coefficients of equation (26) so as to satisfy
-equations (25) and (27) yields the following expression for 9 at T = O




,

/"
k k -
(Q)T:O = -e(0) Qj% cos O sin ki€ cos kpm + E? sin 6 cos k3£ sin kgn)‘e e
(28)
where
1/2
k = (k2 + k) (29)
The left side of equation (19) thus becomes, at 7 = O
“be cos 6 + by sin 6
Qi = i > = %ﬂ[(klg cos® 6 + ko= sin® 9)cos kit cos kon
e t=o
T=0
- 2k1ks sin @ cos 6 sin kit sin konl (30)

It is convenient to restrict attention at this point to the not inconsid-
ergble class of cases in which any one of the following additional conditions
hold

sin 6 = 0 , cos § =0 , ky =0, ko = O (31)

The first two conditions permit the wavelength to be arbitrary in both direc-
tions but require that the equilibrium magnetic field be parallel to either
of the two sets of nodal lines of the initial boundary perturbations. The
latter two conditions permit arbitrary orientation of the nodal lines and the
equilibrium magnetic field, but require that the boundary perturbation be
two-dimensional, that is, have the form of cylindrical corrugations. Equa-
tions (19) and (30) indicate that the nodal lines remain fixed for all time
for these cases, and that the solution 1s given by

7 = e(T) cos kit cos kon (32)

where the amplitude e(7) satisfies the equation

a -V, (k12 cos® 9 + ko2 sin® g)e .
_d.—'gl: = k = _“K:C}€ (33)

The solution is

€ = €t ot (31



where €, vrepresents the amplitude at T = O; that is, ey = ¢(0). It should
be observed that the behavior of the boundary is considerably more complicated
if none of the four conditions given in equations (31) apply, since then
(8Z/ST)T_O fails to vanish on the nodal lines where (Z)T_o = 0 and the form of

the boundary perturbation depart immediately from the original cos ki€ cos ko
form.

Substitution into equations (32), (33), and (34) of the original physi-
cal variables using the relations given by equation (19) yields

-t/t3
7 = epe [cos kai(x ~ Vyt)Ilcos ka(y - Vyt)] (35)

where the time constant tg is given by

g T s
& = =
Xo Vz(klz cos< 9 + kgg sin® @)

2 2y1/2

- eV 2 2 2 2 (36)
z Ay sin” 6 + %y cos” ¢
and

N = 2t/ky , Ay = 2n/ke (37)

represent the wavelengths measured in the x and y directions, respectively.
Two general conclusions follow immediately from the above results. The first
is that the presence of the quantities x - Vx4t and y - Vit 1n the arguments
of the cosines of equation (35) indicates that the wave system drifts along
the magnetosphere boundary with the tangential component of the solar wind.
The second is that the time constant té is positive, indicating that the
waves damp with time, or at least never grow.

If k; or ko vanishes, the boundary perturbations are two-dimensional
corrugations with the nodal lines and other generators parallel to the x or
y axis, respectively. The time constants for these cases are given by

A A
(£8), = ——L——, (%) = —r (38)
A= 2V, sin® g Ay=eo 2V, cos® @

10




A plot of the variation of (té)%vzw

8=75°

with wavelength Ayx for various orien-
tations 6 of the equilibrium magnetic
field is shown in figure 2 for a repre-
sentative case in which Vy=500 km/sec.
We see, for instance, that the time con-
stant for decay of corrugations having
east-west generators (\y = ») and sit-
uated near the equatorial plane (6 = 0°)
is of the order of a second Tor wave-
lengths as great as 3000 km, and propor-
tionally less for shorter wavelengths.

It 1r_10reases to infinity, émplylng no o |oloo 20'00 30'00 40'00 50'00
damping, as 6 goes to 90~ and the WAVELENGTH, X ,km

nodal lines are rotated so as to become Figure 2. - Variation of time constant with
parallel to the geomagnetic field lines. wwml&%thfortmydenﬁond_mmn%a_
This example illustrates the general tions on a flat equilibrium boundary
result that corrugations having genera-

tors alined with the equilibrium field are neutrally stable to first order in
small perturbations. This case will, therefore, be re-examined to higher
order of accuracy subsequently herein.

@15€C

30°

15°
OG

TIME CONSTANT, (13),y

Vz=500km/sec

If, on the other hand, neither k; nor ks vanishes, but 6 = 0° or 900,
so that the nodal lines form a rectangular grid and the equilibrium field
lines are alined with one set of nodal lines, we have the following expres-
sions for the time constant

o 2‘1/2 o o 1/2
(), N s (£5) SN Ay
0/6=0 = onv, Ny 0/ Q=g /2 2nv, \ Ax

AN

This result shows the time constant is inversely proportional to Vz, linearly

/2
proportional to the mean scale of the wave system (A2 + A=), and depends,
in addition, on the ratio of wavelengths .
in the x and y directions. A plot of ;/

*
the results for <t0)9=n/2 for

v, = 500 km/sec is shown in figure 3.

We see, once again, that the time con-
stant is of the order of a second for a
wide variety of conditions when mean
wavelengths of the order of a few thou-
sand kilometers are considered. It
should be noted that figure 3 is not
appropriate for displaying the time con-
stants for a two-dimensional corrugation

AY/AX =@ 3

3/2

7/2°5€C
w

N

172

TIME CONSTANT, (1§),

0o

L Il L J

1
2000 4000 6000 8000 10,000
MEAN WAVELENGTH, (12 +2)'/2, km

. 2 o1/ 2 . .
since then (\x~ + Ayo) goes to infin-
ity and an indeterminate form appears. ) )

. . Figure 3. - Variation of time constant with
Results for this case are given correctly mean wavelength for rectangular wave grid
by equation (39), however, or, more on a flat equilibrium boundary.
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explicitly and more generally with respect to the relative orientation of the
directions of the nodal lines and the equilibrium field, by equations (38).

From the above, we conclude that long wavelength waves die out slower
than short wavelength waves, that rectangular grid distortions die out slower
when the wavelength 1s longer in the direction of the field than in the direc-
tion normal to the field, and that two-dimensional distortions having nodal
lines alined with the equilibrium field direction do not damp at all, when
only first-order terms are retained in the analysis. It follows in addition,
that, if the boundary is initially disturbed in such a way that it can be
represented by an arbitrary distribution of waves having the forms described
above, all components would damp with the passage of time, except those that
are two-dimensional and have their nodal lines alined with the equilibrium
field direction. These alone would remain, and they would drift along the
boundary with a speed equal to the tangential component of the solar wind,
neilther damping nor amplifying as they travel. Since this component vanishes
at the nose of the magnetosphere near the subsolar point and increases to the
full speed V - (ng + Vyz + VZZ)L/g of the undisturbed incident stream far
downstream of the earth, the waves tend to drift very slowly near the magne-
tosphere nose, but accelerate to several hundred kilometers per second along
the flanks. The results for all the waves considered show, moreover, that
the time constant is inversely proportional to the normal component V., of
the solar wind velocity. Since Vz equals V at the magnetosphere nose,
and decreases to zero along the flanks, the time constant grows indefinitely
with distance along the magnetosphere boundary from the nose, indicating that
boundary perturbations damp much more slowly on the flanks of the magneto-

sphere than on che nose. We thus find

4 - T /| TIME CONSTANT that all except alined waves tend to
/ AMPLIFICATION, V/Vz  4ap rapidly with very little drift
near the nose of the magnetosphere,
/ but damp slowly as they run rapidly
3 - “7/ along the flanks.
/ Figure 4 has been included to give
MAGNETOSPHERE a more quantitative understanding of
BOUNDARY, (r/rj)sin ¢  the degree to which the time constant
//”,,,——*“" and drift velocity change along the
equatorial portion of the magnetosphere

DRWW'VELOCFTY,V&/V boundary. The solid curve shows the
———————— equatorial trace of the magnetosphere
boundary calculated under the usual
assumption that the geomagnetic field
| ) in the equatorial plane varies as the

0 | 2 inverse cube of the distance from the
(r/1,)cos & center of the earth (Ferraro, ref. 1&;
° Beard, ref. 19; Spreiter and Briggs,
Figure 4. - Variation of lateral coordinate of ref. llu etc.) and normalized by

mamietosphere boundary, (1'/1'“)Sin q, Lime dividine b th’ o tric distance
constant amplification (V/V,), and drift g by € geocen =
velocity (V./V) with gevcentric distance r to the magnetosphere nose. The

X o] &

along a line parallel the colar wind direc- dashed curves show the time constant
tion. « o . -
) amplification factor V/Vy and the

12




normalized drift velocity Vy/V as a function of (r/rg)cos ¢ where r rep-
resents the geocentric distance to the boundary and ¢ is a longlitude angle
measured from the dirsction of apprcach of the undisturbed incident solar
wind. They are calculated using the relations

V/Vy = (r/ro)® (4o)

1l

1/ 2

Ve /V = [1 - (ro/r)®] (41)

FIRST-ORDER SOLUTION FOR SMALL AMPLITUDE WAVES ON A SLIGHTLY
CURVED MAGNETOSPHERE BOUNDARY

The preceding analysis will now be extended to include the effect of
slight curvature of the equilibrium magnetosphere boundary. We again neglect
all terms of higher order than the first in Z, where Z(x,y,t) = Z - Ze Tep-
resents the displacement Z of the perturbed magnetopause relative to the
displacement Z, of the curved equilibrium surface and confine attention to
the case in which the radius of curvature of the equilibrium surface is much
greater than both the wavelength and amplitude of the boundary perturbations.
Under these circumstances, it is permissible to represent the effects of
boundary displacement from 2z = O at any point by superposition of effects of
the equilibrium curvature displacement and the perturbation displacement. The
equilibrium magnetic field can no longer be regarded as a constant in a region
extending several wavelengths in all directions inside the magnetosphere from
the origin, as indicated previously in connection with equation (12), however,
since the irrotationality condition given by equation (1. indicates a non-
vanishing field gradient at a curved boundary. The consequences of this con-
dition can be illustrated in terms of a local coordinate system in which the
o axis is alined with the equilibrium magnetic field vector and the v axis
is the normal to the o axis in the plane determined by the local curvature
of the field line. Then curl B = O evaluated at the equilibrium surface

leads to
B
% se \
< \50) - R (LQ)

where Bge refers to the magnitude of Be at the equilibrium surface, and

R refers to the local radius of curvature of the field line, Since v 1is
thus very nearly parallel to the direction of 2z for the conditions described,
we have the following expression for the equilibrium magnetic field Be in
the vicinity of the magnetopause

z - Zg Z\
Be = Bse <1+-—R-—) Bse <1+R/ (L3)

13



The total field at the boundary is thus
Z Ll
Bs = Bse\L *R)*+Dbs (Lk)

where by 1s the perturbation field associated with the departures Z from
the equilibrium surface. The perturbation field may be evaluated in the same
way as in the preceding section for the flat equilibrium boundary. The result
for a perturbation shape defined by Z(x,y) is found to be the same as deter-
mined before for a perturbation shape defined by Z(x,y). The counterpart of
equation (15) is thus

2
Bse 27 bx cos 6+by sin 6 2 f V¥ 3z Vv 3z 1 dZ
— [1+%=+2 =KmnV, |1-2(=2+L 242
Sr [ R Bse >Z~O "z L V, dx Vy oy Vz 3t
(45)
Subtracting the corresponding expression for the equilibrium state
BS Vg 3Ze Vi OZ
=€ _ 2 - X<, Y&
5, = KmnV, [1 2\V, =t T ay} (46)
and retaining only terms of first order in by, by, and 7 yields
7 cs 6 + b in 6 7 Vo 37 7
Z , (bxcos O + by sin =_<V_xa_z+l.a_+;_a_> (47)
R Bse = Vz 3x  Vz oy  Vz Ot

where Bge 1s a constant equal to the value of By, at, say, the origin.

Introducing the variables ¢, n, {, T, defined by equations (18) trans-
forms equation (L7) into

Z +<b§ cos 6 + bﬂ sin 6> . _1_8_2_ (u8)
R Bse Z=0 Vz ot

If attention is restricted to the class of cases for which any one of the four
conditions given by equations (31) holds, the same line of reasoning as that
described previously to solve equation (19) shows that the solution is given

by
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7 = e(7)cos kit cos kon (49)
where e(7) is given by
~T/t*

€ = ege (50)

€, represents the amplitude at T = O, and

-1
r k.2 cos® 6 + k.2 sin® @
t* = VZ 'J; + 1 2 \‘
L2 \R 2 i
{‘ [l Eﬂ(%y2 cos® 6 + Ny~ sin® 9)}}fl <YZ 1_:[l £%
= VZ = + = | = + = = T
LT LR Ahy (Mo + 7\y2)l/2 R 4§ 1+ V,t5/R
(51)
where Ay and Ay represent the wavelengths in the x and y directions as
defined by equatlon (37), and t§ is the time constant defined by equa-
tion (36). 1In terms of the original varisbles, equations (L9) and (50) are
= -t /t*
Z = €oe [cos ky(x - Vyt)Ilcos ky(y - Vyt)] (52)

This result shows, again, that the wave system drifts along the magneto-
sphere boundary with the tangential component of the solar wind, and that the
amplitude damps with a time constant t*. Now, for R = «, t¥ is always
positive, and the wave amplitude can never grow, as discussed in the preced-
ing section. When R 1s finite, however, more possibilities arise. If R
is positive (the center of curvature of the equilibrium surface is on the
magnetlc field side of the boundary, that is, inside the magnetosphere),

t* < to and the effect of curvature is to reduce the time constant or, equiv-
alently, to increase the rate at which the disturbed boundary returns toward
the equilibrium shape. If, on the other hand, R 1is negative, the possibil-
ity exists that 't*¥ may become negative, indicating that boundary perturba-
tions grow in amplitude with time. The critical radius Repr for neutral
stability is obtained by equating t* +to infinity and solving. The result

is

i/2
Nachy (M + 2y%)

2r(Ax® sin® 6 + A\y® cos® 0)

} (53)

Rer = 'VZtg = '[
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If the nodal lines of the perturbation wave system form a square grid,
that is, Ax = Ay = A\, equation (53) reduces to

Rer = "/E’\/gjf (54)

The formal analysis thus indicates that the boundary is unstable to small
disturbances if the center of curvature is outside the magnetosphere and the
radius of curvature of the equilibrium surface is less than Vot times the
perturbation wavelength. Since the latter 1s required to be much less than
the radius of curvature at the outset of this analysis, it must be concluded
that all square grid boundary perturbations for which the present results are
applicable are stable in spite of possible destabilizing influences due to
curvature of the equilibrium surface.

If k; or k, vanishes and the boundary perturbations are two-dimensional
corrugations as noted previously, the time constants are given by

, -1
1 271 sin® @
(t*)\\X:OO = liVZ <§ + —T—>} (55)
(%), = |v, (L, 2mcos® 6y N (56)
Ay=eo = | V2 \R ./

Since Ay and Ay are supposed to be very much smaller than |R| in the pres-
ent analysis, we see that instability (negative 1t*) occurs only for very
small 6 1f Ax = «, or for 6 very nearly equal to ﬂ/2 if %y = c. For
example, 1T Ax = oo \y = 1000 km, and
R = -60,000 km, |siné|’= (120z)™=

= 0.0515. The critical values for 6
are thus about i3o for two-dimensional
boundary perturbations having nodal
lines alined with the x axis. We
can conclude alternatively by a simple
rotation of the coordinate system that
only those waves having their nodal
lines within 3° of the direction of
the field lines will grow with time.
All others will damp out, and even-
tually disappear. For other values
for 2, and R, the numerical results
will, of course, differ. Figure 5 is
a plot of the variation with 9 of
the critical value of the ratio 1\y/R
for waves having Ny = . Two-

Figure 5.- Stability boundary for two- . . . .
dimensional corrugations (Ag - ) on a dimensional corrugations having %y/R

curved equilibrium surface. less than that indicated by the curve
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are unstable and, conversely, as indicated. Thus, on a flat surface for which
R = « and %y/R = 0, all two-dimensional waves are stable, except those per-
fectly alined with the field direction (6 = 0°) which have neutral stability.
All waves on equilibrium surfaces with R > O are also stable, but those suf-
ficiently closely alined with the field are unstable on equilibrium surfaces
with R < 0. Although R > O nearly everywhere on the magnetosphere boundary,
both cases occur. In particular, negative values Tor R occur in limited
regions in the immediate vicinity of the neutral points N, as illustrated in
figure 6 by the dotted portions of .
traces of the magnetosphere boundary Emmm&¢£{j T
(ref. 19). Also included and indicated el g T T T

60° ™

~ -
by dashed lines are several magnetic NOON-MIDNIGHT. a3a™ 7~ MAGNETOSPHERE BOUNDARY
. . . . . - ’ - ~—— STABLE
field lines for the noon-midnight merid- ‘ // ....... UNSTABLE
ian plane, as given by Mead (ref. 20). / ////‘”L\\\\
e AN
. . /
Since only the nearly alined two- N[/ -T0< \
N/

dimensional waves are significantly
affected by curvature of the equilibrium

surface, it 1s of interest to examine Figure 6. - Traces of the magnetcsphere bound-
the special form to which equations (55) ary.ir.l the eguatorial plane,.noon—mid.night
. . . meridian plane, and several intermediate
and (56) simplify for perfectly alined planes (ref. 19). Magnetic field lines in
waves, name]_y the noon-midnight meridian plane (ref. 20).
t* = R/V, (57)

The time constant is thus equal to the time required for a particle with
velocity Vy +to travel a distance R. Representative values for conditions
at the nose of the magnetosphere may be R = 60,000 km and V, = 500 km/sec,
for which +t* = 120 sec. The time constant increases beyond all bounds at
the neutral points and also far downstream along the flanks of the magneto-
sphere boundary, since V, approaches zero and R does not vanish. Alined
two-dimensional boundary perturbations thus neither damp nor grow as they
drift along the magnetosphere boundary in these regions. A short distance
downstream from the neutral point, we may have R = -60,000 km and

Vz = 100 km/sec, in which case t* = -60 sec, and the waves grow with time.
In all cases, the time constant is long compared with the values representa-
tive of less elongated rectangular grid perturbations.

The small regions of instability near the neutral points are of particu-
lar interest because they provide a means by which solar plasma can be con-
stantly admitted into the magnetosphere, and may very well be associated with
the constant magnetic agitation of the polar regions, as summarized, for
instance, by Fukushima (ref. 21). He assembled a considerable body of ground-
based magnetometer data gathered during the IGY (July 1957 - December 1958)
and the Second Polar Year (August 1932 - August 1933), and analyzed it in var-
lous ways according to the time of day and year, and the degree of disturbance
of the world-wide gecomagnetic field. The results show that the polar regions
are constantly disturbed, even at periods when the planetary geomagnetic field
is very quiet. Two of the many summary plots presented by Fukushima are
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reproduced in figure 7. These show the
latitudinal distribution of the average
geomagnetic disturbance near the noon
and midnight meridians for the case of
Kp = Op, that is, for the very quietest
times as indicated by the planetary
geomagnetic index, at two selected sets
of times extending over the entire
period of the IGY. The results show
that the magnitude of the polar-cap
disturbance is of the order of a few
or several tens of gammas, that both

A=34.5°

Figure 7.- Polar magnetic disturbance near polar caps are equally disturbed when
the noon and midnight meridians at times . . .
during the IGY when Kp = O, and the the sun earth.llng is perpendlcular to
sun-earth line is inclined at 0° and the geomagnetic dipole axis, and that
34.57 to the geomagnetic equatorial the disturbances are a maximum at sum-

. 21). s :
plane (ref. 21) mer noon, and a minimum at winter

midnight. These results, when taken in conjunction with the corresponding
changes in the locations of the neutral points, such as calculated by Spreiter
and Briggs (ref. 14), appear consistent with what might be anticipated on the
basis of direct invasion of charged particles or propagation of hydromagnetic
waves into the polar regions along the field lines from the vicinity of the
neutral points on the magnetosphere boundary.

EXACT SOLUTION FOR ALINED WAVES ON A FLAT
MAGNETOSPHERE BOUNDARY

The anlysis presented in the preceding sections is restricted to consid-
eration of only first-order terms in the perturbation quantities. It is thus
sufficient for the analysis of decaying waves of small amplitude, and of the
initial behavior of amplifying waves. It cannot be used, however, to provide
information on the subsequent behavior of amplifying waves. Although the
general treatment of such cases presents a very complex problem, the analysis
of the special case of alined two-dimensional waves on a flat equilibrium
surface, while nonlinear, remains tractable. This case 1s, moreover, an
informative one since such waves were found in the first-order analysis to be
neutrally stable, and a more accurate analysis 1s required to elucidate their
properties.

For sake of definiteness, consider the equilibrium magnetic field to be
in the direction of the positive y axis, and that the distortions of the
boundary surface change with x, but not with y. For such two-dimensional,
or cylindrical, alined boundary distortions, the perturbation magnetic field
vanishes and the total field remains constant and equal to the value Bg
for the flat equilibrium surface. Eguation (3) thus becomes

Be® }f(—vX dZ/dx + V, - az/at)T
k3 - 1+ (3z/3x)F
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and when combined with the corresponding equilibrium relation given by equa-
tion (16) yields

LM eEN oY xw 2Wxdman 238 o (s
2 3% 2 \ot Vy Ox 2.0x ot Vz dt
Vg Vz z
Introducing the new variables

E=x - Vet T =Vt , 7 =7 -7 (60)

yields
= —_2
V2 o7
St -<57>+1=0 (61)

It can be demonstrated by differentiation that a solution of equation (61) is

(Z -8)%+ (¢ -8)° = (7 -0)° (62)

The equivalent expression in terms of the original variables is

(Z - Vgt - A)% + (x - Vgt - B)® = (Vgt - ) (63)

This solution represents a circle with center at 2z, = Vgt + A, %o = Vit + B,
and radius IVZt - Cl. We can set B = 0 without loss of generality by locat-
ing the coordinate system so that the center of the circle is on the
E =x - Vgt = O axis and, hence, drifts with the tangential component of the
solar wind. The remaining integration constants A and C can be evaluated
by letting t = T at the instant when the center of the circle is at the
origin, and noting that 2z = Zp = €5 at £ = O for all time. The latter
condition follows from the fact that BZ/SE = O0at € = O for the choice of
coordinate system described above, together with the consequence indicated
by equation (59) that 0Z/dt = 0 at such a point. In this way equation (63)
becomes

2
12 )©

[Z - V(b -T)]7 + (x - Vb)) = [Vye(t - T) - Zp]l (6L)

The boundary perturbation is thus described by a circular arc of radius R
given by
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R=|Vg(t - T) - Zn| (65)

with its center located at
xe = Vxt ze = Vg(t - T) (66)

The center thus moves with the velocity components of the undisturbed incident
solar wind Vy and V,. Although this solution is not useful for determining
the dynamical respcnse of the magnetosphere boundary to an initial disturbance
in the form of a periodic wave, it is appropriate for the study of the resronse
of the boundary to an initial displacement in the form of a solitary segment
of a circle. This is not too restricting to render the solution uninterest-
ing, however, since the region of maximum displacement of any continuous dis-
tortion will approximate a circle in form.

Two cases are possible, depending on whether the circular segment bulges
in the directilon of the plasma or the field side of the boundary, or equiva-
lently on whether Zp 1is negative or positive. The case of negative Zp

illustrated in figure 8 will be con-
sidered first. An expression for the
half width W at t > T for this case
can be obtained readily from equa-
FIELD PLASMA tion (63) by equating X'tO W, Z to O,
and solving for W. It is

€6 & =
W= V,(t - T){L} S el 1
R (67)
7 -
At great time, that is when
eo/Vz(t - T) << 1, W grows with time
approximately as
w
/2
W [2Ve (t - T)) (68)
With Vv, = 500 km/sec = 5x107 cm/sec,
€0 = 100 km = 10" cm, and an initial
1 € half’ width W5 = 1000 km = 10°® cm which
Figure 3. - View of trace in &,z plane of according to equation (68) occurs at
perturbed boundary with negative 7. ti - T =10 sec, W in cem is
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] \1/2 t - tNl/2
W= <é;ij?%%) %108 = (i + _EB—_E) %108 cm (69)
i

N

It thus requires 30 sec to double the width of the bulge, and 150 sec to
quadruple the width. Since the maximum displacement lZm| remains constant
as the width increases, the bulge clearly smooths out with the passage of
time. It should be observed, however, that this process is slow compared with
the rates charcteristic of unalined waves.

We next consider the alternative
case of a dent into the magnetic field
side of the boundary. Such a boundary
perturbation is characterized by a pos-
itive value for Zy = €, and negative
t - T, as 1llustrated in figure 9. The
half width W of such a dent is given
for t < T by

2 i/2
W= V,(T - t){[} + -——EEL———} - }- R

FIELD PLASMA

V(T - t)
(70)
-
At great values for T - t, this expres-
sion approximates W
1/ 2
Wa [2Vze(T - % =
[ Z o( )] Zm 60
i/2
= {2Vaeo[ (T - t4) - (£ - 1)1}
(71)
V¢
Figure 9.- View of trace in ¢,z plane of
Thus, with increasing t, W diminishes perturbed boundary with positive Zj.

with a rate dW/dt that increases with

time, If, for example, at an initial instant t = t5, W = 1000 km,

7z = 500 km/sec, €o = 100 km, equation (71) indicates that T - t4 = 10 sec.
At a time 5 sec after t4, W = 707 km, and 5 sec later still equation (71)
indicates that W = 0. Equation (71) is not sufficiently accurate for the
latter time, however, and the more complete relation given by equation (70)
shows, in fact, that W = €¢,. The initially shallow dent thus collapses to

a semicircle in 10 sec, This configuration marks an obvious limit of which
the above analysis may be employed to determine the shape of the entire dent,
As indicated by equations (6L4) through (66), the center of the circle describ-
ing the dent moves to positive 2z at subsequent times. If this solution were
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used to describe the shape of the entire dent, part of the surface would be
shielded from the solar wind, and the condition specified by equation (L)
would not be satisfied.

The appropriate solution for the model defined by equations (1) through
(5) is as follows for the further development of the dent following the time
t = T at which the dent is semicircular with the center of the origin. The
portion of the dent that penetrates most deeply into the magnetosphere is
semicircular and defined for z > z. by equation (64). The remainder of the
boundary connecting the ends of the semicircle and the undeformed equilibrium
portion of the boundary is straight and parallel tc the 2z axis. This fol-
lows from the fact that the magnetic pressure on this portion of the boundary,
as indeed on the entire boundary in this example, is equal to BgZ/8n = KmnV,=.
Since 1fig = *1 on these segments of the boundary, equation (3) shows that

2

KmnVZE = Kmn(Vy - vy) (72)

Hence,
vx - Vx| = Vz (73)

where vy represents the velocity of the boundary, positive in the direction
of the positive x axis, and the signs are associated with the two segments
in such a way that the straight-sided intrusion into the magnetosphere col-
lapses rather than expands with the passage of time. Viewed in the ¢,z
coordinate system that drifts along
the boundary with the tangential compo-
nent of the solar wind Vg, the
straight segments travel toward the =z
axis with a uniform velocity equal to
V. The straight sides thus remain
connected to the ends of the semi-
circle, and all conditions are satis-
fied. The resulting form of the
indentation is illustrated in figure 10
for the set of numerical conditions
given above following equation (71).

Of particular note is the result that

FIELD PLASMA
t-T, sec

Z, km=

50 the dent collapses from a semicircle
to a line along the 2z axis in
1/5 sec.
100 Once a segment of the boundary
€. km becomes parallel to the 2z axis, it

. loses its ability to diminish the =z
Figure }O.- r;‘races in ¢,z plane at suc- component of the velocity of the inci-
cessive times during late stages of

collapse of dent in magnetosphere dent particles. Whether considered
boundary.
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from the classical Chapman-Ferraro point of view in which the individual par-
ticles of the solar wind are specularly reflected from the boundary (K = 2 in
eq. (3)), or from the more recently proposed point of view in which a fluid
flows along the boundary (K = 1), particles encountering the straight segment
of the boundary are merely shunted toward the opposite side of the dent as
they continue their progress toward the circular nose of the dent. Although
effects of a single particle experiencing multiple encounters with the bound-
ary are not included in the foregoing analysis, it is evident that the number
of particles, or the density of the fluid, confined within the dent increases
with time as the dent collapses in width. As a result, the nose of the dent
is subject to an additional pressure for a small interval of time immediately
before the final collapse. This portion of the boundary will thereupon com-
mence to move in the direction of the positive 2z axis, and it appears
inevitable that a narrow column of compressed solar plasma will be injected
in the magnetosphere, TIts width will be a fraction of ¢, and quite unre-
lated to the initial width of the dent. The time to collapse, however,
depends very nearly on the square of the initial width, as indicated approxi-
mately by equation (71). Further analysis and discussion of the behavior of
the dent and possible effects of double or multiple encounters is provided in
the following section,

The actual magnetosphere boundary is not flat as assumed in this section,

but curved, We have seen in the preceding section that curvature exerts a
stabilizing or destabilizing influence on the boundary perturbations accord-
ing to whether the center of curvature is on the field or plasma side of the
boundary. For the former, equations (52) and (57) show that the amplitude of
alined waves diminishes by a factor e in a time teuyr = R/Vz. It is of
interest to compare this time with the time collapse teol of a shallow cir-
cular dent of initial width W and amplitude €p. The ratio of these two
times

AT (74)
teol  w2lovye, W

tCLlI‘

provides a measure of which tendency will tend to dominate. If teur/teol

is much greater than unity, the stabilizing effect of curvature will be small,
and a dent will tend to collapse much as in the case described above for the
flat equilibrium surface. If, on the other hand, this ratio is much less
than unity, the collapsing action will have little time to develop and the
stabilizing effect of curvature will dominate. If, for a numerical example,
R = 50,000 km and W = 1000 km, then teyr/teol = 1 for €o = 10 km. Thus,
such dents will tend to smooth out with time if ¢p 1s substantially less
than 10 km, and collapse with subsequent particle penetration if ey 1s sub-
stantially greater than 10 km. It would thus appear that even quite modest
irregularities in the solar wind could result in isolated columns of solar
plasma penetrating the boundary of the magnetosphere in spite of the stabiliz-
ing influence of curvature. The plasma in these columns would, moreover,
retain its tangential momentum as it initially penetrates into the magneto-
sphere. Subsequent interaction with the ambient magnetosphere plasma would
lead to a transfer of momentum across the boundary that might be roughly
equivalent to the effective viscous interaction postulated in the
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magnetosphere convectilon model of Axford and Hines (ref, 22). If, on the
other hand, the solar wind is perfectly steady and free of irregularities, no
penetration would occur, except in the vicinity of the neutral points where
the boundary curvature reverses,

MOTION OF PARTICLES DURING FINAL STAGES OF COLLAPSE OF
A CIRCULAR DENT IN THE MAGNETOSPHERE BOUNDARY

A critical point in the development of a semicircular cylindrical dent
in the magnetosphere boundary is reached when the dent assumes such a form
that & rebounding particle has positive rather than negative V,, Since a
particle with positive V, will inevitably hit the boundary of the dent a
second time, and add an effect not included in the foregoing analysis, it is
of interest to inquire whether the dent reaches the semicircular form before
the first double bounce occurs. If it does, the preceding discussion of the
final stages of the collapse and possible injection of particles would have
to be modified substantially. It is the obJject of this section to demon-
strate, within the classical Chapman-Ferraro formulation of the problem with
specular reflection at the boundary, that such double bounces do not occur
before the dent becomes a semicircle, Double bounces do begin to cccur
slightly later, however, and the section is concluded with some quantitative
remarks on the consequences thereof,

In a t,z coordinate system
drifting along the boundary with the
tangential component of the solar wind,
and with the angles X and Xo and

-—Vz other quantities as 1llustrated in fig-
ure 11, equations (3) and (5) combine
\" to yield the following expressions for
the normal velocity vy of a segment
™R P of a circular dent
xO

vy/Vz = =1 + cos X (75)

Particles of the undisturbed incident
solar plasma approach P with veloc-
€, ity components VLO and V“o perpendic-

ular and parallel the local surface
element given by

13
Vig, = V, cos X , VHO =V, sin X

Figure 11.- View of trace in £,z plane of (0]
circular dent in mapgnebtocsphere boundary. (/6)
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Relative to P, which is itself moving with normal velocity wv,, the corre-
sponding component velocities of the particle are

Vip, =V, cos X - v , vy =V, sinX (71)
Ro

Upon impact, the tangential velocity component remains unchanged, and the nor-
mal velocilty component relative to P 1s reversed. Designating the velocity
components after rebound by subscript 1, we have

= - + = i X
VLRl V, cos X + vp, VHRl V, sin (18)
Returning to the original £,z coordinate system, we have

V., = -V, cos X + 2vy = Vy(cos X - 2) , v

N =V, sin X (79}

N

Resolution into components parallel to the £,z coordinate axes, that drift
with the tangential component V., of the solar wind, yilelds

Vg = -V, sin X + VT cos X = 2Vy sin X (80a.)

1 11

Vz, = Vicos X +Vy sinX = V,(1 - 2 cos X) (80p)
1

1

The resultant speed of the rebounding particles is thus (in the drifting coor-
dinate system)

1/ 2 i/ 2

) = V,(5 - Lk cos X) (81)

Equation (80b) shows that a particle that strikes the edge of the dent
where ¥ = Xo rebounds exactly along the £ axis with VZl = O if

cos Xo = 1/2. The critical value for ¥Xo is thus 60°. Equation (81) shows
that the rebounding particle travels with velocity J§VZ and arrives at the
origin at exactly the same instant as the center of the dent, since the half
width of the dent is «3 times the distance from the origin to the center of
the circular arc defining the dent when Xo = 60° and the center is itself
moving with velocity V,. It is thus evident that this particle will not
experience a double collision prior to the time at which the dent attains a
semicircular form.
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Since it is not immediately evident that the particle to which attention
is directed in the preceding paragraph is the first to actually experience a
doutle collision, it is important to inquire further and determine the coor-
dinates, at the moment the dent becomes semicircular, of all the particles
that hit the dent in all preceding time. To be precise, consider the location
at t = T of the particles that collided with any- part of the dent at an
earlier time t, when the center of the dent is at

2o = -Vgit Ec = O (82
the radius R is
R = ey + Vpit (83)
and the angle X, is
-1
Xo = cos ~(V,At/R) (8L)

where At = T - to. The coordinates of an arbitrary point P at time t.
are

-R sin X - (85a)

tp
e
R(cos X - cos Xg) (85b)

z
Pe
where, as always, |X| < |Xo|. Particles colliding with the dent at t, thus
travel for an interval of time At with velocity components given by equa-
tion (80) and arrive at the following coordinates at T.

uve
1!

tp. + Ve At = R sin X(-1 + 2 cos Xg) (86a)
2 = 2p + Vziﬁt = R cos X(1 - 2 cos Xg) (86Yb)

This result shows that these particles are situated on the portion of a cir-
cular arc of radius

1/2 V., O
(2 + z%) /2 R ‘l -2 cos Xg | = eo} 1 - z (87)
| 0
that extends over the range of angles given by
-1 1 -1 VZAt ’ .
< = —_— o I
|X] < |Xol cos T T €O/V2At’ cos A (88)
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The results are plotted in dimensionless
form in figure 12. The various circular
arcs define the location at t =T of
the particles that collided with the
dent at such earlier times that the
ratio VyAt/ey had the numerical value
indicated. The final conclusion is that
& circular dent in the magnetosphere z
boundary is able to collapse all the way
to a semicircle before the first double
bounce occurs.

For a certain interval of time after
the center of the circle passes the ori-

VzA'/E(): 5

4

3

gin, the dent will continue to collapse Figure 12.- Location at time T of parti-

without any double encounter with a par-
ticle. During this time, the nose of
the dent will continue to be described
by a semicircle as discussed previously
and as illustrated in figure 12. The
radius of the circular nose is

€y - Vz(t-T), and the sides are par-
allel to the =z axis. The flat sides
of the dent are thus traveling toward
the 2z axis with velocity equal to V,,
and particles encountering these surfaces
will be deflected with a velocity compo-
nent in the ¢ direction equal to %2V,
while the component in the =z direction
remains unchanged and equal to V.

cles that were specularly reflected from
the dent at earlier time.

/ 7€ 60°

As demonstrated near the beginning 7 -
of this section, the first particle that
is deflected in such a way as to insure
a double impact is the one that makes
initial contact with the edge of the
dent when Xg = 60°. It is deflected
SO as to travel exactly along the ¢
axis with velocity-J?Vz, and hence
passes through the origin at the same
instant (t = T) as the center of the
dent. This particle continues on its
way, and makes its second encounter with
the surface of the dent at the instant
when the radius of the circle is equal
to e, (3 - J3)/2 » 0.63¢,. The center

I3

of the circle is thus at about 0.37€q, Figure 13.- Configuration of dent at instant

and the configuration of the dent is

as illustrated in figure 13. The addi-
tional pressure exerted on the boundary
by these and succeeding particles will

when particle which was deflected from
edge of the dent when X = 60° makes its
second impact.



.

cause the portion of the flat surface nearest the axis to be slowed somewhat
in its advance toward the
nature, however, because the initial deflection must occur after the time when
Xo = 60°, and the entire effect is terminated well before the time when

Figure l4.- Configuration of dent at instant

when first particle to be deflected from
surface of the dent makes its
second impact,

the flat

SEMICIRCULAR

DENT
/
ya

£

Figure 15.- Sketeh of possible mechaniom for
injection of columns of solar wind plasma
inte marnetosphere.
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MULTIPLE-BOUNCE PENETRATION
AND PINCHING OFF

13

axis.

This effect must be of a rather transient

Xo = 90°, In any case, the total
effect is expected to be too weak and
transient to prevent this portion of
the dent from continuing its advance
toward the z axis until, eventually,
the two sides meet and the original
plane boundary of the geomagnetic field
is restored along the ¢ axis.

At a slightly later instant, when
the center of the semicircle progresses
to 2eo/3, the first particle to bounce
off the flat surface will encounter the
cpposite side of the dent., It will hit
at exactly the junction of the straight
and circular elements, as illustrated
in figure 14, and moreover, will be
followed by a steady stream of parti-
cles extending over a steadily widen-
ing portion of the side of the dent.
The particles approaching their second
encounter with the dent in x > O have
velocity components V_ = Vg, Yx = 2V,
and number density n = n/2 where n
is the density in the undisturbed
stream. Then eguations (3) and (5)
combine to yield the following expres-
sion for the velocity of the affected
portion of the straight segment of the
dent

BSe/8x = 2mnV} - 2m(Yy - Vo)
= m(2V, - vp) (89)
Solving for vn/VZ, we get
v /Vy = 2 -N2 = 0.59 (v0)

We thus find this portion of the dent
bulging out into the magnetosphere at
the same time as the portion of the
dent near the ¢ axis is snapping
shut much in the manner illustratcd in
figure 15, This analysis supports the




a

more qualitative discussion provided in the preceding section, and lends sup-
port to the conclusion presented there that this mechanism appears capable of
injecting wildely separated columns of solar plasma into the magnetosphere
under all but the steadiest of conditilons.

Ames Research Center
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National Aeronautics and Space Administration
Moffett Field, Calif., June 11, 1964
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